Soil organic carbon quality in forested mineral wetlands at different mean annual temperature

نویسندگان

  • Cinzia Fissore
  • Christian P. Giardina
  • Randall K. Kolka
  • Carl C. Trettin
چکیده

Forested mineral soil wetlands (FMSW) store large stocks of soil organic carbon (SOC), but little is known on: (i) whether the quality of SOC stored in these soils (proportion of active versus more resistant SOC compounds) differs from SOC in upland soils; (ii) how the quality of SOC in FMSW varies with mean annual temperature (MAT); and (iii) whether SOC decomposition rates in these environments respond to warming and drying more strongly than those observed in upland soils. To address this substantial knowledge gap, we identified nine FMSW and fifteen paired upland forest sites across three bioregions in North America (sub-alpine in Colorado; north-temperate in Minnesota; and south-temperate in South Carolina) to test the following three hypotheses. First, FMSW store a higher proportion of active SOC compared with upland systems because long anaerobic periods favor the accumulation of labile substrates. Second, in FMSW, SOC quality decreases from cold to warm bioregions because high quality detritus accumulates preferentially at cool sites where decomposition is slow. Finally, decomposition of SOC in FMSW will respond more strongly to warming under aerobic conditions than SOC from upland forest soils because of higher accumulation of active SOC in FMSW. To test these hypotheses, we incubated FMSW and upland forest soils at two constant temperatures (10 and 30 C) for 525-d under aerobic conditions and constant moisture. In contrast to our first hypothesis, we observed similarly rapid depletion of active SOC compounds at initial stages of incubation across FMSW and upland sites, and across the 525-d incubations we observed overall lower SOC decomposition rates in our FMSW soils. In line with our second hypothesis, and across FMWS and upland soils, we found greater SOC loss in the sub-alpine bioregion than both temperate regions. In contrast to our last hypothesis, we found no difference in the temperature sensitivity (Q10) of SOC decomposition in FMSW and upland forest soils. Critically, total SOC loss (g SOC per g soil) was larger in FMSW because of the large amount of SOC stored in these ecosystems, indicating that despite a lack of difference between FMSW and upland responses, the total release of C from FMSW that could result from global warming may be large. 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ecosystem carbon emissions from 2015 forest fires in interior Alaska

BACKGROUND In the summer of 2015, hundreds of wildfires burned across the state of Alaska, and consumed more than 1.6 million ha of boreal forest and wetlands in the Yukon-Koyukuk region. Mapping of 113 large wildfires using Landsat satellite images from before and after 2015 indicated that nearly 60% of this area was burned at moderate-to-high severity levels. Field measurements near the town ...

متن کامل

North American prairie wetlands are important non-forested land-based carbon storage sites.

We evaluated the potential of prairie wetlands in North America as carbon sinks. Agricultural conversion has resulted in the average loss of 10.1 Mg ha(-1) of soil organic carbon on over 16 million ha of wetlands in this region. Wetland restoration has potential to sequester 378 Tg of organic carbon over a 10-year period. Wetlands can sequester over twice the organic carbon as no-till cropland ...

متن کامل

Organic Matter Decomposition following Harvesting and Site Preparation of a Forested Wetland

Organic matter accumulation is an important process that affects ecosystem function in many northern wetlands. The cotton strip assay (CSA) was used to measure the effect of harvesting and two different site preparation treatments, bedding and trenching, on organic matter decomposition in a forested wetland. A Latin square experimental design was used to determine the effect of harvesting, site...

متن کامل

Forest and Pasture Carbon Pools and Soil Respiration in the Southern Appalachian Mountains

Our ability to estimate the changes in carbon (C) pools and fluxes due to forest conversion is hampered by a lack of comparative studies. We measured aboveand belowground C pools and soil respiration flux at four forested and four pasture sites in the southern Appalachian Mountains. Aboveand belowground C pools were significantly larger (P < 0.01, t-test) at forested sites relative to pasture s...

متن کامل

Tropical wetlands: A missing link in the global carbon cycle?

Tropical wetlands are not included in Earth system models, despite being an important source of methane (CH4) and contributing a large fraction of carbon dioxide (CO2) emissions from land use, land use change, and forestry in the tropics. This review identifies a remarkable lack of data on the carbon balance and gas fluxes from undisturbed tropical wetlands, which limits the ability of global c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009